

Computer Aided Design

Team 7203 KNO3 Zachary Brown

Computer Aided Design

Team 7203

KNO3

Zachary Brown

What is CAD?

By allowing you to build every part virtually ahead of time, CAD can be used to develop your robot, find and correct design flaws providing for a more efficient build season.

- Computer-Aided Design involves creating computer models defined by geometry and parameters.
- A three-dimensional representation of a part or a system of parts, which can be readily altered by changing relevant variables.
- Unlike two dimensional (2D), 3D modeling technology provides a lifelike representation of a design, from structural composition and the way parts fit and move together, to the performance impact of characteristics such as size, thickness, and weight.
- CAD systems enable Teams to view objects and to test these objects by simulating real-world conditions.

Benefits of CAD

- Increases Your Team's Productivity
 - ► The CAD software helps your team visualize the final product that is to be made.
 - Allows you to create subassemblies and constituent parts.
 - Ability to understand the way things interface with one another.
 - Your robot can be animated to see how the actual product will work.

Benefits of CAD, con't.

Improves the Quality and Accuracy

- ▶ 3D assemblies can be scanned to check for interferences, clearances and fit.
- Easily and immediately make necessary modifications.
- With greater accuracy, the errors are reduced leading to a better design of your robot.
- Reduces wasted time and money because of a faulty design.

Use previous geometry to make sure parts and holes are exactly where you want them.

Flexibility

- Most dimensions and relations are associative, meaning if you change one dimension, the remaining dimensions and mating parts will move accordingly
- Creates geometries and dimensions of the product, its subassemblies and its components which allows for accurate cutting, drilling, CNC specifications

Benefits of CAD, con't.

Better communications

- CAD allows for standardized drawings.
- ▶ Ease of explaining to teammates how the robot is to be built

Documentation of your robot

- CAD documents your robot design
- Bill of materials for the robot components to place parts orders
- Great Engineering Notebook Documentation!

Hardware Libraries

Standard parts libraries that can be used year to year

Software Programs

Finding Part Models

PTC Creo

Complete TETRIX kit of parts on-line https://www.ptc.com/en/academic-program/k-12-program/students/first/software

Servo City

Downloadable STEP files come with many parts

Our Recommendation

▶ 7203 uses AutoDesk Inventor and GrabCAD to allow for cooperation on large projects. GrabCAD offers an online place to store your CAD models and part libraries; this way a project can be accessed by multiple members of a team.

Tutorials

Tutorials: some videos used by our team

<u>http://students.autodesk.com/?nd=first_inventor</u> - offical step by step guide personalized for FRC participants.

http://wikihelp.autodesk.com/Inventor/enu/2012 - Wikipedia for Inventor

<u>http://www.usfirst.org/roboticsprograms/frc/cad-design-and-animation</u> - the offical FIRST